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ABSTRACT

In this paper we discuss how to compare various (possibly misspeci�ed) density forecast models using
the Kullback-Leibler Information Criterion (KLIC) of a candidate density forecast model with respect to
the true density. The KLIC-di�erential between a pair of competing models is the (predictive) log-likelihood
ratio (LR) between the two models. Even though the true density is unknown, using the LR statistic
amounts to comparing models with the KLIC as a loss function and thus enables us to assess which density
forecast model can approximate the true density more closely. We also discuss how this KLIC is related
to the KLIC based on the probability integral transform (PIT) in the framework of Diebold et al. (1998).
While they are asymptotically equivalent, the PIT-based KLIC is best suited for evaluating the adequacy
of each density forecast model and the original KLIC is best suited for comparing competing models. In
an empirical study with the S&P500 and NASDAQ daily return series, we �nd strong evidence for rejecting
the Normal-GARCH benchmark model, in favor of the models that can capture skewness in the conditional
distribution and asymmetry and long-memory in the conditional variance.

Key Words: Density forecast comparison, KLIC, Predictive log-likelihood, Reality check.

JEL Classi�cation: C3, C5, G0.

�Previous versions of this paper have been circulated with the title, \A Test for Density Forecast Comparison with Appli-
cations to Risk Management." We would like to thank the Editors (Terence Mills and Allan Timmermann), a referee, Jin-Seo
Cho, Alexei V. Egorov, Eric Ghysels, Lutz Kilian, Essie Maasoumi, Norm Swanson, Hal White, and Ximing Wu, as well as
seminar participants at the 13th annual conference of the Midwest Econometrics Group, Econometric Society San Diego Win-
ter Meeting, NBER/NSF Dallas Time Series Conference, International Symposium on Forecasting, EC2, University of British
Columbia, and Universit�e Catholique de Louvain (CORE), for useful discussions and comments. We also thank Canlin Li for
providing the CRSP data. All remaining errors are our own.

yDepartment of Economics, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A. Tel: +1 (210) 458-5303.
Fax: +1 (210) 458-5837. Email: yong.bao@utsa.edu.

zCorresponding author. Department of Economics, University of California, Riverside, CA 92521, U.S.A. Tel: +1 (951)
827-1509. Fax: +1 (951) 827-5685. Email: tae.lee@ucr.edu.

xDepartment of Economics, Marmara University, Istanbul, 81040, Turkey. Tel: +90 (216)3368487. Fax: +90 (216)3464356.
Email: saltoglu@marmara.edu.tr.



1 Introduction

Forecasting densities has always been at the core of the �nance and economics research agenda. For instance,

most of the classical �nance theories, such as asset pricing, portfolio selection and option valuation, aim to

model the surrounding uncertainty via a parametric distribution function. Extracting information about

market participants' expectations from option prices can be considered another form of density forecasting

exercise (e.g., Jackwerth and Rubinstein, 1996). Moreover, there has also been increasing interest in eval-

uating forecasting models of ination, unemployment and output in terms of density forecasts (Clements

and Smith, 2000). While the research on evaluating each density forecast model has been very versatile

since the seminal paper of Diebold et al. (1998), there has been much less e�ort in comparing alternative

density forecast models. Given the recent empirical evidence on volatility clustering and asymmetry and

fat-tailedness in �nancial return series, a formal test of relative adequacy of a given model among alternative

models will de�nitely �ll a gap in the existing literature. Deciding on which distribution and/or volatility

speci�cation to use for a particular asset is a common task even for �nance practitioners. For example,

despite the existence of many volatility speci�cations, a consensus on which model is most appropriate has

yet to be reached. As argued in Poon and Granger (2003), most of the (volatility) forecasting studies do not

produce very conclusive results because only a subset of alternative models are compared, with a potential

bias towards the method developed by the authors.1

Following Diebold et al. (1998), it has become common practice to evaluate the adequacy of a density

forecast model based on the probability integral transform (PIT) of the process with respect to the model's

density forecast: see Clements and Smith (2000), Berkowitz (2001), Freichs and L�o�er (2003), Bauwens

et al. (2004), among others. If the density forecast model is correctly speci�ed, the PIT follows an IID

uniform distribution on the unit interval and, equivalently, its inverse normal transform follows an IID

normal distribution. We can therefore evaluate a density forecast model by examining the departure of the

transformed PIT from this property (IID and normality). The departure can be quanti�ed by the Kullback-

Leibler (1951) information criterion, or KLIC, which is the expected logarithmic value of the likelihood ratio

(LR) of the transformed PIT and the IID normal variate. Thus the LR statistic measures the distance of a

candidate model to the unknown true model.

On the other hand, to compare competing density forecast models, we may not have to use the PIT.

1They claim that lack of a uniform forecast evaluation technique makes volatility forecasting a di�cult task. They further
state (p. 507), \However, it seems clear that one form of study that is included is conducted just to support a viewpoint that
a particular method is useful. It might not have been submitted for publication if the required result had not been reached.
This is one of the obvious weaknesses of a comparison such as this; the papers being prepared for di�erent reasons, use di�erent
data sets, many kinds of assets, various intervals between readings, and a variety of evalution techniques."
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Instead, we propose using directly the KLIC divergence measure for the original series as suggested by

Vuong (1989). Hence, we use the KLIC as a \loss" function for comparing competing density forecast

models. In the framework of White (2000), we formulate a test statistic in terms of the loss-di�erentials

between the competing models and the benchmark, to compare various density forecast models against a

benchmark model. Therefore, using the KLIC as a loss function amounts to using the negative predictive log-

likelihood function as a loss function (as the true density in the de�nition of KLIC cancels out in formulating

the KLIC-di�erential). In this framework, all the density forecast models can be misspeci�ed. Even though

the true density is unknown, our test compares models in terms of distances of these models to the true

density, and thus enables us to assess which volatility and/or distribution speci�cations are statistically more

appropriate to model the time series behavior of a return series.

As an application, in the empirical section we demonstrate how the proposed testing methodology can

be used to assess density forecasts for �nancial asset returns. We show that, by using the test, it is possible

to di�erentiate the relative importance of various volatility and distribution speci�cations. To this end, we

conduct a density forecast comparison of 80 (= 10� 8) models constructed from ten di�erent distributions

and eight di�erent volatility models. Our empirical �ndings based on the daily S&P500 and NASDAQ return

series con�rm the recent evidence on �nancial return asymmetry and long memory in volatility. The results

obtained in the paper may shed some light on how both the distribution and volatility speci�cations can be

treated to provide a better forecasting practice.

This paper is organized as follows. In Section 2, we develop our distance measure based on the out-

of-sample conditional KLIC divergence measure between a candidate density forecast model and the true

density forecast model. We also discuss the framework to evaluate a density forecast model based on the

PIT. Section 3 shows how to compare competing density forecast models in the framework of White's (2000)

\reality check" using the out-of-sample conditional KLIC distance measure as a loss function.2 In Section

4 we present our empirical study of the daily S&P500 and NASDAQ return series. Finally, Section 5

concludes. More detailed description of the distribution and volatility models described in Section 4 is given

in the appendix.

2 Forecasting Density

In this section we discuss how to evaluate the quality of a density forecast model based on the KLIC measure.

We consider two di�erent ways to construct the KLIC, namely KLIC(y) and KLIC(x), the �rst based on the

2Much of the forecasting literature deals with forecast evaluation, forecast comparison, and forecast combination. Our paper
extends the density forecast evaluation of Diebold et al. (1998) to density forecast comparison. We note that Mitchell and Hall
(2005) further extend Diebold et al. (1998), Bao et al. (2004), and this paper to density forecast combination.
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return process y and the second based on the double probability transforms denoted as x (the inverse normal

transform of the return's probability transform). We show that they are related but that they can be used

in di�erent contexts. KLIC(x) is a measure used in the density forecast evaluation literature, e.g., Diebold

et al. (1998) and Berkowitz (2001). It would be di�cult to use KLIC(y) for the purpose of evaluation due

to the fact that the true density to form KLIC(y) is unknown. However, for comparing many competing

density forecast models, we can use either KLIC(y) or KLIC(x), as both can measure the quality of a density

forecast model. While they are related, KLIC(y) has several advantages for the comparison purpose (to be

discussed in Section 3). Both can be treated as a loss function in the framework of Diebold and Mariano

(1995), West (1996), White (2000), and Giacomini and White (2003).

2.1 Set-up

Consider a �nancial return series fytgTt=1: This observed data on a univariate series is a realization of a

stochastic process YT � fY� : 
 ! R; � = 1; 2; : : : ; Tg on a complete probability space (
;FT ; PT0 ); where


 = RT � �T�=1R and FT = B(RT ) is the Borel �-�eld generated by the open sets of RT ; and the joint

probability measure PT0 (B) � P0[Y
T 2 B]; B 2 B(RT ) completely describes the stochastic process. A

sample of size T is denoted as yT � (y1; : : : ; yT )0:

Let a �-�nite measure �T on B(RT ) be given. Assume PT0 (B) is absolutely continuous with respect to �T

for all T = 1; 2; : : : ; so that there exists a measurable Radon-Nikod�ym density gT (yT ) = dPT0 =d�
T ; unique

up to a set of zero measure-�T .

Following White (1994, Section 2.2), we de�ne a probability model P as a collection of distinct probability

measures on the measurable space (
;FT ): A probability model P is said to be correctly speci�ed for YT

if P contains PT0 : Our goal is to evaluate and compare a set of parametric probability models fPT� g; where

PT� (B) � P�[Y
T 2 B]: Suppose there exists a measurable Radon-Nikod�ym density fT (yT ) = dPT� =d�

T for

each � 2 �; where � is a �nite-dimensional vector of parameters and is assumed to be identi�ed on �; a

compact subset of Rk : see White (1994, Theorem 2.6).

In the context of forecasting, instead of the joint density gT (yT ); we consider forecasting the conditional

density of Yt; given the information Ft�1 generated by Yt�1: Let 't (yt) � 't(ytjFt�1) � gt(yt)=gt�1(yt�1)

for t = 2; 3; : : : and '1 (y1) � '1(y1jF0) � g1(y1) = g1(y1): Thus the goal is to forecast the (true, unknown)

conditional density 't (yt).

For this, we use a one-step-ahead conditional density forecast model  t (yt;�) �  t(ytjFt�1;�) �

f t(yt)=f t�1(yt�1) for t = 2; 3; : : : and  1 (y1) �  1(y1jF0) � f1(y1) = f1(y1). If  t(yt;�0) = 't(yt)

almost surely for some �02 �; then the one-step-ahead density forecast is correctly speci�ed, and it is said
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to be optimal because it dominates all other density forecasts for any loss functions (e.g., Diebold et al.,

1998; Granger and Pesaran, 2000a, 2000b).

In practice, it is rarely the case that we can �nd an optimal model. As it is very likely that \the true

distribution is in fact too complicated to be represented by a simple mathematical function" (Sawa, 1978),

all the models proposed by di�erent researchers can be misspeci�ed and thereby we regard each model as an

approximation to the truth. Our task is then to investigate which density forecast model can approximate

the true conditional density most closely. We have to �rst de�ne a metric to measure the distance of a given

model to the truth, and then compare di�erent models in terms of this distance.

2.2 Conditional KLIC for Density Forecast Models

The adequacy of a density forecast model can be measured by the conditional Kullback-Leibler (1951)

Information Criterion (KLIC) divergence measure between two conditional densities,

It (' :  ;�) = E't [ln't (yt)� ln t (yt;�)];

where the expectation is with respect to the true conditional density 't (�jFt�1), E't ln't (ytjFt�1) < 1;

and E't ln t (ytjFt�1;�) < 1. Following White (1982, 1994), we de�ne the distance between a density

model and the true density as the minimum of the KLIC

It
�
' :  ;��t�1

�
= E't

�
ln't (yt)� ln t

�
yt;�

�
t�1
��
; (1)

where ��t�1 = argmin It (' :  ;�) is the pseudo-true value of � (Sawa, 1978; White, 1982).3 We assume that

��t�1 is an interior point of �: The smaller this distance is, the closer the density forecast  t
�
�jFt�1;��t�1

�
is to the true density 't (�jFt�1).4

However, It
�
' :  ;��t�1

�
is unknown since ��t�1 is not observable. We need to estimate �

�
t�1: As our

purpose is to compare the out-of-sample predictive abilities among competing density forecast models, we

split the data into two parts, one for estimation and the other for out-of-sample validation. At each period t in

the out-of-sample period (t = R+1; : : : ; T ), we use the previous R rolling observations fyt�1; : : : ; yt�RgTt=R+1
to estimate the unknown parameter vector ��t�1 and denote the estimate as �̂R;t�1 (where the subscript R

denotes the size of the in-sample period).5 Under some regularity conditions, we can consistently estimate

3We use the word \distance" loosely because KLIC does not satisfy some basic properties of a metric, i.e., I ( 1 :  2) 6=
I ( 2 :  1) and KLIC does not satisfy a triangle inequality. However, in this paper, as we will use the KLIC in comparing
various competing models with a �xed benchmark model (i.e., the Normal-GARCH model in Section 4), KLIC can serve as a
distance metric with respect to the �xed benchmark.

4This motivates Vuong (1989) to design a model selection test for two competing models, while Amisano and Giacomini
(2005) consider a weighted out-of-sample likelihood ratio test.

5There are di�erent schemes to estimate ��t�1; namely, recursive, �xed, and rolling schemes: That is, �
�
t�1 can be estimated
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��t�1 by �̂R;t�1 by maximizing R
�1Pt

s=t�R+1 ln s (ys;�) : see White (1994, Theorem 2.12 and Theorem

3.4) for the sets of conditions for the existence and consistency of �̂R;t�1.

Using f�̂R;t�1gTt=R+1; we can obtain the out-of-sample estimate of EIt
�
' :  ;��t�1

�
(where E(�) is the

unconditional expectation) by

IR;n(' :  ) �
1

n

TX
t=R+1

ln['t(yt)= t(yt; �̂R;t�1)] (2)

where n = T �R is the size of the out-of-sample period. Note that

IR;n(' :  ) =
1

n

TX
t=R+1

ln
�
't(yt)= t

�
yt;�

�
t�1
��
+
1

n

TX
t=R+1

ln[ t
�
yt;�

�
t�1
�
= t(yt; �̂R;t�1)]; (3)

where the �rst term in IR;n(' :  ) measures model misspeci�cation (the distance between the optimal density

't(yt) and the model  t
�
yt;�

�
t�1
�
) and the second term measures parameter estimation uncertainty due to

the distance between ��t�1 and �̂R;t�1.
6

2.3 Out-of-sample Probability Integral Transform

Alternatively, we may utilize an inverse normal transform of the PIT of the actual realization of the process

with respect to the model's density forecast. The PIT of the realization of the process with respect to the

density forecast is de�ned as

ut �
Z yt

�1
 t(yjFt�1;��t�1)dy: (4)

It is well known that if  t(yjFt�1;��t�1) coincides with the true density 't (yt) almost surely, then the

sequence futg is IID and uniform on the interval [0; 1] (denoted U [0; 1] henceforth). This provides a powerful

approach to evaluating the quality of a density forecast model. Diebold et al. (1998) exploits and popularizes

this idea to check the adequacy of a density forecast model.

Our purpose of invoking the PIT is to make It
�
' :  ;��t�1

�
operational as 't (�) is unknown. We take a

further transform

xt � ��1(ut); (5)

based on the whole subsample fyt�1; : : : ; y1g; or a �xed sample fyR; : : : ; y1g; or a rolling sample fyt�1; : : : ; yt�Rg; respectively:
See West and McCracken (1998, p. 819) for more discussion on the three forecasting schemes. While using the whole sample
has the advantage of using more observations, we will use the rolling sample in our application because it may be more robust
to possible parameter variation in the presence of potential structural breaks.

6The e�ects of parameter estimation on prediction densities have been studied in recent literature, e.g., Pascual et al.
(2001). In �nance, Bawa et al. (1979) show that the predictive distribution of an asset return that is obtained by integrating
the conditional distribution over the parameter space is di�erent from the predictive distribution that is obtained when the
parameters are treated as known. Also, Kandel and Stambaugh (1996), Barberis (2000) and Xia (2001), among others, explore
the economic importance of estimation risk on predicting stock returns, selecting portfolios, hedging, long-horizon investment
decisions, and market timing.
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where �(�) is the standard normal CDF. If the sequence futg is IID U [0; 1] ; then fxtg is IID N (0; 1). More

importantly, Berkowitz (2001, p. 467) shows that

ln
�
't(yt)= t

�
yt;�

�
t�1
��
= ln [pt (xt) =� (xt)] ; (6)

where pt (xt) is the conditional density of xt and � (xt) is the standard normal density. To consider the e�ect

of parameter estimation uncertainty, we de�ne

x̂t � ��1
�Z yt

�1
 t(yjFt�1; �̂R;t�1)dy

�
; (7)

t = R+ 1; : : : ; T:

We have transformed the departure of  t(�;�) from the unknown true density 't(�) to the departure of

pt (�) from IID N(0; 1). It may sound like a loop as we do not know pt (�) either. The truth about the

transformed PIT x̂t is nevertheless quite simpler: it should behave as IID N(0; 1) if the density forecast hits

the true density. We can specify a exible pt (�) to nest IID N(0; 1) as a special case, but when we specify

 t (�;�) there is no guarantee that the postulated  t (�;�) will nest the unknown 't(�): We follow Berkowitz

(2001) by specifying x̂t as an AR(L) process

x̂t = �
0Xt�1 + ��t; (8)

where Xt�1 = (1; x̂t�1; � � � ; x̂t�L)0, � is an (L + 1) � 1 vector of parameters, and �t is IID distributed and

independent of Xt�1. In Berkowitz (2001), �t is further assumed to be normally distributed. Clearly this is

restrictive. A remedy for this is to specify a exible alternative distribution for �t; say h (�t;#�) ; where #�

is a vector of distribution parameters such that when #�= #
y
�, h(�;#y�) is IID N(0; 1). A test for IID N(0; 1)

of x̂t can be constructed by testing elements of the parameter vector # = (�
0
; �;#0�)

0; say � = 0; � = 1; and

#� = #
y
�: In particular, we assume that fx̂tg

T
t=R+1 follows the AR process (8) with �t IID distributed with

the semi-nonparametric (SNP) density function of order K (Gallant and Nychka, 1987),

h (�t;#�) =

�PK
k=0 rk�

k
t

�2
� (�t)R +1

�1

�PK
k=0 rku

k
�2
� (u) du

; (9)

where r0 = 1: Now #� = (r1; � � � ; rK)0 : Setting rk = 0 (k = 1; : : : ;K); h (�t) = � (�t) : Given (8) and (9), the

conditional density of x̂t is

pt (x̂t;#) =

h

�
(x̂t��0Xt�1)

� ;#�

�
�

; (10)

which degenerates to � (x̂t) = � (�t) by setting # = #
y � (00; 1;00)

0
. The parameter vector # can be

estimated by #̂n = (�̂
0
n; �̂n; #̂

0
�n)

0 that maximizes n�1
PT

t=R+1 ln pt (x̂t;#).
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Then we can obtain the out-of-sample estimated KLIC based on fx̂tgTt=R+1 for measuring the departure

of pt (�) from � (�) as follows

IR;n(p : �) � 1

n

TX
t=R+1

ln[pt(x̂t; #̂n)=� (x̂t)] (11)

=
1

n

TX
t=R+1

ln[pt(x̂t; #̂n)=pt(x̂t;#)] +
1

n

TX
t=R+1

ln[pt(x̂t;#)=pt (xt;#)]

+
1

n

TX
t=R+1

ln[pt (xt;#) =� (xt)] +
1

n

TX
t=R+1

ln[�t (xt) =� (x̂t)]

=
1

n

TX
t=R+1

ln[pt(x̂t; #̂n)=pt(x̂t;#)] +
1

n

TX
t=R+1

ln[pt(x̂t;#)=pt (xt;#)]

+
1

n

TX
t=R+1

ln
�
't(yt)= t

�
yt;�

�
t�1
��
+
1

n

TX
t=R+1

ln[�t (xt) =� (x̂t)];

where the last equality comes from (6). The third term measures the distance between 't(yt) and the forecast

model  t
�
yt;�

�
t�1
�
(model misspeci�cation), the second and fourth terms measure the distance between ��t�1

and �̂R;t�1 (parameter estimation uncertainty), and the �rst term measures the sampling variation in the

estimation of pt(x̂t; #̂n).

2.4 Evaluating Density Forecast Models

We use IR;n(p : �) to evaluate the adequacy of the density forecast model  t (yt;�) ; because using IR;n(' :  )

is infeasible due to the unknown 't (yt) : On the other hand, they are related. From (2) and (11),

IR;n(p : �) = IR;n(' :  ) (12)

+
1

n

TX
t=R+1

ln[pt(x̂t; #̂n)=pt(x̂t;#)] +
1

n

TX
t=R+1

ln[pt(x̂t;#)=pt (xt;#)]

� 1
n

TX
t=R+1

ln[ t
�
yt;�

�
t�1
�
= t(yt; �̂R;t�1)] +

1

n

TX
t=R+1

ln[�t (xt) =� (x̂t)]:

Note that IR;n(p : �) !a:s: IR;n(' :  ) as n ! 1; R ! 1; since �̂R;t�1 !a:s: �
�
t�1 as R ! 1 (for all

t = R+ 1; : : : ; T ) and #̂n !a:s: #
� as n!1.

Given the KLIC, IR;n(p : �); we can design an LR test statistic

LRn � 2
TX

t=R+1

ln[pt(x̂t; #̂n)=� (x̂t)] = 2� n� IR;n(p : �); (13)

which is asymptotically �2 with degrees of freedom (L + 1) + 1 +K if the model is correctly speci�ed, or

equivalently, if x̂t is IID N(0; 1), that is if � = 0; � = 1; and #� = (r1; � � � ; rK)0 = 00: This can be regarded

as a generalized version of the LR statistic of Berkowitz (2001).
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3 Comparing Density Forecast Models

Suppose there are l + 1 models (j = 0; 1; : : : ; l) in the set of competing, possibly misspeci�ed, models.

To establish notation with model index j; let the density forecast model j (j = 0; 1; : : : ; l) be denoted by

 jt (yt; �̂
j

R;t�1): Let the loss-di�erential between model 0 and model j at each time t be denoted as dj;t; and

let �dj;n =
1
n

PT
t=R+1 dj;t be the average of dj;t over the out-of-sample observations t = R + 1; : : : ; T: Model

comparison between model j and the benchmark model (model 0) can be conveniently formulated as the

hypothesis testing of some suitable out-of-sample moment conditions on the loss-di�erential.

3.1 Loss Functions

Since the KLIC measure takes on a smaller value when a model is closer to the truth, we can regard it

as a loss function and use IR;n(' :  ) or IR;n(p : �) to formulate the loss-di�erential. For example, the

out-of-sample average of the loss di�erential between model 0 and model j can be written as

�dj;n(x) � IR;n(p0 : �)� IR;n(pj : �): (14)

However, for the purpose of comparing the density forecast models, it is better to use IR;n(' :  ) than

IR;n(p : �). Using IR;n(' :  ); we write the out-of-sample average of the loss-di�erential between model 0

and model j as follows

�dj;n(y) � IR;n(' :  0)� IR;n(' :  j) (15)

=
1

n

TX
t=R+1

ln[ jt (yt; �̂
j

R;t�1)= 
0
t (yt; �̂

0

R;t�1)]

=
1

n

TX
t=R+1

dj;t(yt; �̂
j

R;t�1):

where dj;t(yt;�
j) � ln[ jt (yt;�j)= 0t (yt;�0)] and �j = (�00;�j 0)0:

For the purpose of comparing the density forecast models, several advantages of using �dj;n(y) over

�dj;n(x) may be pointed out. One is that it is simpler as it does not involve the true density 't(yt) since

it is cancelled out in forming the loss-di�erential (15). Thus the loss-di�erential �dj;n(y) can be computed

even though 't(yt) is unknown. Another advantage is that the e�ect of parameter estimation uncertainty is

asymptotically negligible for the inference (we discuss more on this issue shortly { see footnote 7). A third

advantage is rather obvious from observing the relationship in (12), that is, IR;n(p : �) is more complicated

than IR;n(' :  ).

It is important to note that formulating �dj;n(y) amounts to using the negative predictive log-likelihood
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as a loss function:

�dj;n(y) =
1

n

TX
t=R+1

[(� ln 0t (yt; �̂
0

R;t�1))� (� ln 
j
t (yt; �̂

j

R;t�1))]: (16)

This is closely related to the work of Amisano and Giacomini (2005) when comparing two density forecast

models. In particular, they take the logarithmic scoring rule, which gives the log-likelihood ratio. In practice,

we conjecture that the test based on fytg (i.e., with �dj;n(y) in (15) as the loss-di�erential) should be more

powerful compared with that based on fx̂tg (i.e., with �dj;n(x) in (14) as the loss-di�erential) due to the

estimation error associated with estimating the density of fx̂tgTt=R+1:

3.2 Test Statistic

When we compare model j with a benchmark (model 0), the null hypothesis is that model j is no better

than the benchmark, H0 : Edj;t(yt;��jt�1) � 0 (j = 1; : : : ; l). We can use the out-of-sample predictive ability

tests of Diebold and Mariano (1995) by referring to the standard asymptotic result for
p
n �dj;n. By a suitable

central limit theorem, we have

p
n[ �dj;n(y)� Edj;t(yt;��jt�1)]! N(0; �2) (17)

in distribution as n � n(T ) ! 1 when T ! 1; where �2 � lim
n!1

Var(
p
n[ �dj;n(y) � Edj;t(yt;��jt�1)]). In

general, the variance �2 may be rather complicated because it depends on parameter estimation uncertainty

(West, 1996). However, we note that one of the signi�cant merits of using the KLIC as a loss function

in comparing density forecast models is that parameter estimation uncertainty does not a�ect asymptotic

inference. This is due to the use of the same objective function for the in-sample parameter estimation

(minimizing the KLIC to get �̂) and for the out-of-sample forecast validation (using the KLIC as a forecast

evaluation criterion).7

When we compare multiple models against a benchmark jointly, the null hypothesis of interest is that no

7As shown in West (1996, Theorem 4.1), when the derivative of the loss di�erential evaluated at ��jt�1 = ((�
�0
t�1)

0; (��jt�1)
0)0

is zero, i.e., F � E@dj;t(yt;�j)=@�j
��
�
�j
t�1

= 0; under some proper regularity conditions, �2 does not depend on parameter

estimation uncertainty. We have this condition

F � E@dj;t(yt;�j)=@�j
��
�
�j
t�1

= E@ ln[ jt (yt;�
j)= 0t (yt;�

0)]=@�j
���
�
�j
t�1

= E

"
E't@ ln 

j
t (yt;�

j)=@�j
���
�
�j
t�1

� E't@ ln 0t (yt;�0)=@�0
��
��0t�1

#
= 0

because both terms inside the brackets are zero as ��jt�1 maximizes E't ln 
j
t

�
yt;�

j
�
, which makes parameter estimation

uncertainty due to the second term in (3) asymptotically negligible in �2: The last line follows from the law of iterated
expectations.
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model is better than the benchmark:

H0 : max
1�j�l

Edj;t(yt;��jt�1) � 0. (18)

This is a multiple hypothesis, the intersection of the one-sided individual hypotheses Edj;t(yt;��jt�1) � 0 for

j = 1; : : : ; l: The alternative is that H0 is false, that is, there is at least one model that is superior to the

benchmark. If the null hypothesis is rejected, there must be at least one model for which Edj;t(yt;��jt�1)

is positive. Under appropriate conditions and de�ning �d to be an l � 1 column vector by stacking �dj;n(y),

then
p
n(�d � E(d�)) ! N(0;
) as n(T ) ! 1 when T ! 1; for 
 positive semi-de�nite, where Ed� =

Ed�t (assuming stationarity) for d�t de�ned as an l� 1 column vector obtained by stacking the dj;t(yt;�
�j
t�1):

8

White's (2000) test statistic for H0 is formed as

�Vn � max
1�j�l

p
n[ �dj;n(y)� Edj;t(yt;��jt�1)]: (19)

However, as the null limiting distribution of �Vn is unknown due to the presence of unknown 
;White (2000)

shows that the distribution of
p
n(�dy��d) converges to that of

p
n(�d�E(d�)); where �dy is obtained from the

stationary bootstrap of Politis and Romano (1994). By the continuous mapping theorem this result extends

to the maximal element of the vector
p
n(�dy � �d) so that the empirical distribution of

�V yn = max
1�j�l

p
n( �dj;n(y)

y � �dj;n(y)) (20)

may be used to compute the p-value of �Vn. This bootstrap p-value for testing (18) is called the \reality check

p-value."

In practice, to implement the reality check test of White (2000), we set �dj;n(y) = 0: This setting makes

the null hypothesis the least favorable to the alternative, because setting �dj;n(y) = 0 guarantees that the

statistic satis�es the null hypothesis E( �dj;n(y)y � �dj;n(y)) = 0 for all j. Consequently , it renders a very

conservative test. When a poor model is introduced, the reality check p-value for model j becomes very large

and, depending on the variance of �dj;n(y), it may remain large even after the inclusion of better models. So

we may regard White's reality check p-value as an upper bound of the true p-value. Hansen (2005) considers

the following modi�cation to (20)

�V yn = max
1�j�l

p
n( �dj;n(y)

y � g( �dj;n(y))); (21)

where di�erent g(�) functions will produce di�erent bootstrap distributions that are compatible with the

null hypothesis. In this paper, we follow Hansen's (2005) recommendation to set g(�) as a function of the
8White (2000) does not require that 
 be positive de�nite (which is required in West 1996), but that 
 be positive semi-

de�nite (White 2000, p. 1105-1106). This allows for the case when some of the models under comparison are nested, as long as
at least one of the competing models (k = 1; : : : ; l) is nonnested with respect to the benchmark.
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variance of �dj;n(y), i.e.

g( �dj;n(y)) =

�
0 if �dj;n(y) � �Aj

�dj;n(y) if �dj;n(y) > �Aj
(22)

where Aj =
1
4n

�1=4
q
V ar(n1=2 �dj;n(y)) with the variance estimated from the bootstrap samples. When

Edj;t(yt;��jt�1) = 0 for all 1 � j � l; then the reality check p-value of White (2000) will provide an

asymptotically correct size. However, when some models are dominated by the benchmark model, i.e.,

Edj;t(yt;��jt�1) < 0 for some 1 � j � l; then the reality check p-value of White (2000) will make a conserva-

tive test. So, when bad models are included in the set of the competing models, White's test tends to behave

conservatively. Hansen's (2005) modi�cation is basically to remove the e�ects of those (very) bad models in

the comparison.

4 Application

In this section, we apply the reality check test under the KLIC-based loss function to investigate the adequacy

of various density forecast models for the daily S&P500 and NASDAQ return series. We consider the following

model

yt = �t + "t � �t + zt�t; (23)

where �t = E(ytjFt�1); �2t = E("2t jFt�1), and zt � "t=�t: We assume that zt is IID and �t follows an

MA(1) process without a constant term (see, e.g., Anderson et al., 2002; Hong and Lee, 2003). A density

forecast model based on (23) can be decomposed into two parts: speci�cation of �2t and speci�cation of the

conditional distribution of fztgTt=1 : We discuss technical details of the distribution and volatility models in

the appendix.

4.1 Distribution Speci�cations

We can specify the distribution of the standardized residuals fztgTt=1 by a conditional density function f (z) =

f (zjFt�1) = f (zjFt�1;�d) with a vector of distribution parameters �d. Given f (�) and conditional volatility

�2t = �2t (�v) with a vector of volatility parameters �v; the conditional distribution of yt is  t (ytjFt�1) =

 t (ytjFt�1;�) = f (zt) =�t; where � = (��; �
0
d;�

0
v)
0 and �� is the MA parameter. Throughout, we use 1

and 2, if they exist, to denote the skewness and excess kurtosis parameters speci�ed by a distribution,

respectively. For symmetric distributions, 1 = 0:

The candidate distributions included in this paper are, of course, far from being complete. Distributions

that have been used in the literature but which we do not use in this paper include the exponentially

generalized beta distribution of type II (McDonald and Xu, 1995), the generalized t (McDonald and Newey,
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1988) and its skewed generalization (Theodossiou, 1998), the semiparametric density (Engle and Gonz�alez-

Rivera, 1991), the local density (Gourieroux and Jasiak, 2001), the generalized hyperbolic density (Eberlin

and Keller, 1995), and the stable Paretian distribution (Panorska et al., 1995). In general, the cost of

using these more general or complicated models is computational time and the sensitivity of estimation to

starting values of parameters and to outliers in the data. Further, for some distributions, the second and

higher moments do not even exist. Nonexistence of moments, especially the second moment, can cause some

fundamental problems in pricing theory.

We consider �ve symmetric distributions: the standard normal, Student t, generalized error, Laplace, and

double Weibull distributions. The standard Gaussian normal density has long been used in the literature

primarily due to its simplicity and its well understood properties. However, the assumption of normality

is quite dubious in that � (z) has a very restrictive shape with 1 = 0 and 2 = 0; which may not be

consistent with the actual data. The Student t distribution has fatter tails compared with the standard

normal distribution. Nelson (1991) uses the generalized error distribution (GED) to model the distribution of

stock market returns. The GED is still symmetric, but is quite exible in the tails. The Laplace distribution

(also known as the double-exponential distribution), a special case of the GED, is used in Mittnik and

Rachev (1993) to model unconditional distributions of asset returns. The double Weibull distribution, which

generalizes the Laplace distribution, but di�ers from the GED, is also proposed in Mittnik and Rachev (1993)

While the GED and double Weibull distribution allow for considerable exibility for 2; they cannot

model the skewness observed in many �nancial series. In this paper, we include �ve exible parametric

distributions which can model both skewness and excess kurtosis, namely the skewed t; inverse hyperbolic

sine, mixture of normals, double gamma, and Gram-Charlier/Edgeworth-Sargan densities. The skewed t is

proposed by Fern�andez and Steel (1998) as a four-parameter skewed Student distribution, where the four

parameters specifying the location, dispersion, skewness and kurtosis have meaningful interpretations. The

inverse hyperbolic sine (IHS) transformation with two parameters is used in Hansen et al. (2000) and Choi

(2001) to model asymmetric and fat-tailed distributions. Another distribution which can exhibit skewness

and excess kurtosis is the mixture of normal distributions, see Venkataraman (1997) and Wang (2001) for

its application. For simplicity, in this paper we focus on a mixture of two normals. The double gamma

distribution is another candidate distribution, which was �rst proposed by Knight et al. (1995). The Gram-

Charlier/Edgeworth-Sargan density (to be simply denoted as Sargan henceforth), has also been used in the

literature: see, e.g., Maule�on and Perote (1995) and Jondeau and Rockinger (2001). We follow Jondeau

and Rockinger (2001) and use the type-B density and adopt their algorithm to implement the positiveness
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constraint.

4.2 Volatility Speci�cations

The conditional variance �2t can be speci�ed with various volatility models. We can specify it nonparamet-

rically, parametrically (the GARCH family), or through some stochastic volatility model. For comparison of

these di�erent volatility speci�cations, see Poon and Granger (2003) and references therein. In this paper,

we focus on the GARCH family.

The ARCH model of Engle (1982) and its GARCH generalization by Bollerslev (1986) can capture a

salient feature of �nancial series: volatility persistence. Note that the GARCH model implies an exponential

decay in the autocorrelation of the conditional variance. Empirical �ndings suggest that a shock in volatility

seems to have long memory. This gives rise to the fractionally integrated GARCH model (FIGARCH) of

Bollerslev and Mikkelsen (1996), where a fractional parameter d controls the rate of hyperbolic decay in

the autocorrelation of the conditional variance. A generalization of FIGARCH is the hyperbolic GARCH

(HYGARCH) model of Davidson (2004). The component GARCH (CGARCH) model of Ding and Granger

(1996) and Engle and Lee (1999) is also capable of capturing slow decay in the second moments.

The above GARCH-family models are symmetric in the sense that positive and negative shocks have

the same e�ects on the conditional variance. Asymmetric GARCH models include the exponential GARCH

(EGARCH) model of Nelson (1991), the GJR-GARCH of Glosten et al. (1993), the threshold GARCH

(TGARCH) of Zakoian (1994), the smooth transition GARCH (STGARCH) of Gonz�alez-Rivera (1998), and

the asymmetric power ARCH (APARCH) of Ding et al. (1993). Note that the APARCH model nests ARCH,

GARCH , GJR, and TGARCH. If we combine the idea of fractional integration with asymmetric GARCH

models, we can easily have the HYAPARCH, for example.

4.3 Empirical Results

In this section, we use two data sets to compare the 80 density forecast models described in the previous

subsections (ten di�erent distribution models and eight di�erent volatility models). The two data sets are

the daily S&P500 and NASDAQ return series, retrieved from �nance.yahoo.com and CRSP.9 They are from

January 3, 1990 to June 30, 2003 (T = 3403). We split the sample into two parts (roughly into two halves):

one for in-sample estimation of size R = 1703 and another for out-of-sample density forecasts of size n = 1700.

We use a rolling-sample scheme. That is, the �rst density forecast is based on observations 1 through R

9There were a few missing observations in the NASDAQ series from �nance.yahoo.com, which were checked against the
CRSP data provided by Canlin Li. Other than these few observations, the Nasdaq series from the two sources were consistent.
Regarding the week following September 11, 2001, we treat it as a long holiday.
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(January 3, 1990 to September 24, 1996), the second density forecast is based on observations 2 through

R + 1 (January 4, 1990 to September 25, 1996), and so on. We �x the lag of the conditional variance and

the lag of the squared errors in all the volatility models to be both 1.

As all the models are possibly misspeci�ed, for each combination of volatility and conditional distribution,

we �rst evaluate the adequacy of each density forecast model. Table 1 reports IR;n(p : �) (�rst row) for each

model and the associated p-value (second row) of the LR statistic (13) for testing the optimality of a density

forecast model, where L and K in the AR(L)-SNP(K) speci�cation are chosen by the Akaike Information

Criterion (AIC). From Table 1, we observe the following.

Firstly, when we look for the model that gives the minimum value of IR;n(p : �), i.e., the model that best

approximates the true density forecast, we �nd that for the S&P500 data, given any volatility, the mixture

distribution fares best, followed by IHS, and then double gamma. The common property of these distributions

is that they aim to model the potential fat-tailedness and skewness. More speci�cally, Mixture-CGARCH

obtains the least KLIC measure followed by Mixture-HYGARCH. On the other hand, the normal, Laplace

and skewed t distributions deliver the highest KLIC statistics indicating their relatively poor performance.

For the NASDAQ, we obtain a somewhat similar picture. Here both the Sargan and mixture densities appear

to be the two most successful distributions, while the normal and Laplace distributions are among the worst.

Secondly, given a volatility model, the lowest KLIC comes from one of the �ve skewed distributions.

In particular, for the S&P500 data, the mixture normal distribution seems to do very well, while for the

NASDAQ data, both the mixture normal and Sargan densities fare well. Given a distribution model, the

lowest KLIC comes from either an asymmetric volatility model (e.g., EGARCH) or a long-memory volatility

model (e.g., CGARCH), or an asymmetric and long-memory volatility model (e.g., HYAPARCH). This

indicates that symmetric and short-memory volatility models may not be adequate enough to approximate

the conditional variance of return series.

Table 2 reports the values of the negative predictive log-likelihood, �n�1
PT

t=R+1 ln 
j
t (yt; �̂

j

R;t�1). The

conclusions we can draw from Table 2 are consistent with those from Table 1 { there is further evidence for

skewness in the conditional distribution, and evidence of asymmetry and long-memory in the conditional

volatility. As in Table 1, the mixture and IHS distributions are the best alternatives. We also observe

that overall model ranking based on KLIC(x) is consistent with that based on the negative predictive log-

likelihood of y, in the sense that a low (high) KLIC(x) is often associated with a low (high) negative predictive

log-likelihood.

Also reported in Table 2 are the reality check p-values, where the benchmark is the Normal-GARCH
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model, the most commonly used combination in empirical studies. The p1 and p2 refer to the reality check

p-values of White (2000) and Hansen (2005), respectively. For the S&P500 data, with the p-value of 0.007,

the null hypothesis that no competing model is superior to the benchmark is strongly rejected. For the

NASDAQ data, the null hypothesis may be rejected at the 10% level with Hansen's p-value of 0.097. Hence,

the evidence that some of the competing density forecast models considered in the comparison dominate the

Normal-GARCH model is strong for the S&P500 returns and moderate for the NASDAQ returns. Overall,

this is consistent with our conclusion that skewness in the conditional distribution and asymmetric and

long-memory in the conditional volatility are two salient features of �nancial return series.

5 Conclusions

In this paper we consider a framework to compare density forecast models using the KLIC of a candidate

density forecast model with respect to the true density as a loss function. We show that using the KLIC as

a loss function amounts to using the (negative) predictive log-likelihood function as a loss function. Even

though the true density is unknown, our test is in fact to compare models based on the KLIC distances

of these models to the true density and thus enables us to assess which density forecast model can better

approximate the true density. While they are asymptotically equivalent, the PIT-based KLIC is best suited

for evaluating a single density forecast model and the KLIC based on the return series is best suited for

comparing multiple models.

There have been several e�orts in constructing statistical methods to compare density forecast models

in the literature. Compared to related tests by Sarno and Valente (2004), using the nonparametric kernel-

based density, and by Corradi and Swanson (2004), using the Kolmogorov statistics, our approach using the

likelihoods is both computationally and conceptually more straightforward. We also show that one of the

signi�cant merits of using the KLIC as a loss function in comparing density forecast models is that parameter

estimation uncertainty does not complicate asymptotic inference due to the use of the same objective function

for the in-sample parameter estimation and the out-of-sample forecast validation.

Our empirical �ndings based on the daily S&P500 and NASDAQ return series con�rm the recent evidence

on skewness in �nancial return distributions. We also �nd strong evidence for supporting asymmetry and

long-memory in the conditional volatility.

The method discussed in this paper can also be used to compare alternative credit risk models, to compare

density forecasts of asset portfolios, and to compare simulated densities from alternative economic models.
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APPENDIX A: Parametric Distributions

In the following, f (z;�d) with parameter(s) �d; if any, is the standardized density function of the stan-
dardized residuals fztg :

1. Normal

f (z) = � (z) =
1p
2�
exp

�
�z

2

2

�
; 2 = 0:

2. Student t

f (z; �) =
�
�
�+1
2

�
�
�
�
2

� 1p
� (� � 2)

�
1 +

z2

� � 2

�� �+1
2

; � > 2; 2 =
6

� � 4 ; � > 4:

3. GED

f (z; �) =
� exp (�0:5 jz=�j�)
�2(1+1=�)� (1=�)

; � > 0; � =
q
2(�2=�)� (1=�) =� (3=�); 2 =

� (1=v) � (5=v)

[� (3=v)]
2 :

4. Laplace

f (z) =
1p
2
exp

�
�
p
2 jzj

�
; 2 = 3:

5. Double Weibull

f (z; a) =
a

2�

��� z
�

���a�1 exp�� ��� z
�

���a� ; a > 0; � =s 1

�
�
a+2
a

� ; 2 = �
�
4+a
a

��
�
�
2+a
a

��2 � 3:
6. Skewed t

f (z; �; �) =

8>><>>:
2s

�+��1
�( �+12 )
�( �2 )

1p
�(��2)

�
1 + �2(sz+m)2

��2

�� �+1
2

if z � �m
s

2s
�+��1

�( �+12 )
�( �2 )

1p
�(��2)

�
1 + ��2(sz+m)2

��2

�� �+1
2

if z > �m
s

;

1 =
(� � 2)3=2

�
�2 � 1

� �
�4 + 1

�
� [(� � 3) =2]

p
��3s3� (v=2)

�
m
�
m2 + 3s

�
s3

;

2 =
3
�
�5 + ��5

�
(� � 2)

(� + ��1) (� � 4) s4 +
3m2

�
m2 + 2s

�
s4

�
4m (� � 2)3=2

�
�2 � 1

� �
�4 + 1

�
� [(� � 3) =2]

p
��3s4� (v=2)

;

where � > 0; � > 2; I = 1 (z � �m=s) ; m = � [(� � 1) =2]
p
(� � 2) =� (� � 1=�) =� (�=2) ; s =p

(�2 + 1=�2 � 1)�m2; 1 exists if � > 3 and 2 exists if � > 4:

7. Inverse Hyperbolic Sine

f (z;�; �) =
sr

2�
h
(zs+ �)

2
+ 1
i
�2
exp

 
�
�
sinh�1 (zs+ �)� �

�2
2�2

!
;

1 =
!1=2 (! � 1)2 [! (! + 2) sinh(3�) + 3 sinh (�)]

4s3
;

2 =
(! � 1)2

�
!2
�
!4 + 2!3 + 3!2 � 3

�
cosh (4�) + 4!2 (! + 2) cosh (2�) + 3 (2! + 1)

�
8s4

�3;
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where � > 0; � = !1=2 sinh (�) ; s =
p
(! � 1) [! cosh (2�) + 1] =2; ! = exp

�
�2
�
: Note that

sinh (x) =
ex � e�x

2
, sinh�1 (x) = ln

�
x+

p
x2 + 1

�
; cosh (x) =

ex + e�x

2
:

10. Mixture of Normals

f (z; p1; �1; �1) = p1
1p
2��21

exp

"
� (z � �1)2

2�21

#
+ p2

1p
2��22

exp

"
� (z � �2)2

2�22

#
;

1 = p1
�
3�1�

2
1 + �

3
1

�
+ p2

�
3�2�

2
2 + �

3
2

�
;

2 = p1
�
6�21�

2
1 + �

4
1 + 3�

4
1

�
+ p2

�
6�22�

2
2 + �

4
2 + 3�

4
2

�
� 3;

where p2; �2; and �2 are determined through the constraints p1+p2 = 1; p1 � 0; p2 � 0;
P2

i=1 pi�i = 0;

and
P2

i=1 pi
�
�2i + �

2
i

�
= 1:

11. Double Gamma

f (z;�1; �2; p) =

(
(1�p)��11
�(�1)

jzj(�1�1) exp (��1 jzj) if z � 0
p�

�2
2

�(�2)
z(�2�1) exp (��2z) if z > 0

;

1 =
p� (3 + �2)

�32� (�2)
� (1� p) � (3 + �1)

�31� (�1)
;

2 =
p� (4 + �2)

�42� (�2)
� (1� p) � (4 + �1)

�41� (�1)
� 3;

where 1 > p > 0; �1 > 0; �2 > 0;

�1 =
p�1�2

(1� p)�2
; �2 =

s
�2 (1� p)

�
(�1 + 1)�2 (1� p)

p�1
+ (�2 + 1)

�
:

12. Gram-Charlier / Edgeworth-Sargan Density

f4 (z; 1; 2) =
h
1 +

1
6
H3 (z) +

2
24
H4 (z)

i
� (z) ;

where 4 � 2 � 0; U1 � 1 � L1 ; H3 (z) = z3 � 3z; H4 (z) = z4 � 6z2 + 3:
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APPENDIX B: Volatility Speci�cation

In the following, in some cases we use � (L) =
Pp

i=1 �iL
i; � (L) =

Pq
j=1 �jL

j ; where L is the backshift

operator. Similarly, � (L) is a polynomial in L:

1. GARCH(p, q)

�2t = ! +

qX
i=1

�i"
2
t�i +

pX
j=1

�j�
2
t�j ;

! > 0; �i � 0; �j � 0;
pX
i=1

�i +

qX
j=1

�j < 1:

2. GJR(p; q)

�2t = ! +

qX
i=1

�
�i"

2
t�i + 'iSt�i"

2
t�i
�
+

pX
j=1

�j�
2
t�j ;

St�i =

�
1 if "t�i < 0
0 if "t�i � 0

;

! > 0; �j > 0; �i + 'i > 0:

3. APARCH(p; q)

��t = ! +

qX
i=1

�i (j"t�ij � 'i"t�i)� +
pX
j=1

�j�
�
t�j ;

! > 0; �i > 0; �j > 0; 1 > 'i > �1; � > 0:

4. EGARCH(p; q)

ln�2t = ! + [1� � (L)]�1 [1 + � (L)] ['1zt�1 + '2 (jzt�1j � E jzt�1j)] :

5. STGARCH(p; q)

�2t = ! +

pX
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�i�
2
t�i +
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�1j"

2
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t�jF ("t�d)
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F ("t�d) =
1

1 + exp ('"t�d)
� 1
2
;

! > 0; �i > 0; �1j >
1

2
�2j > 0; ' > 0:

6. FIGARCH(p; d; q) / HYGARCH(p; d; q)

Bollerslev and Mikkelsen (1996) introduce a FIGARCH model as follows (by setting � = 1; where � is
an additional parameter for its generalization HYGARCH)

�2t = ! [1� � (L)]�1 +
�
1� [1� � (L)]�1 � (L)

n
1 + �

h
(1� L)d � 1

io�
"2t
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If we rewrite � (L) = 1��� (L) (note that the de�nition of � (L) = (1� � (L)� � (L)) (1� L)�1 implies
that it has a constant term), we have

� (L) = 1� � (L)� (1� �� (L))
n
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io
= 1� � (L)� 1� �

h
(1� L)d � 1

i
+ �� (L) + �� (L)�

h
(1� L)d � 1

i
= �� (L) + �� (L)� �

h
(1� L)d � 1

i
+ �� (L)�

h
(1� L)d � 1

i
;
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:

Therefore, we can de�ne a HYGARCH(p; d; q) model as

�2t = ! + � (L)�2t +

"
�� (L)� � (L) +

1X
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�kL
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#
"2t ;

�k = � (��k � �k) ; � (L) =
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j :

The parameters are �v =
�
!;�;��0; �; d

�0
: For a HYGARCH(1; d; 1) model, the following constraints

are su�cient for positiveness of �2t : �
� � � + �d � 0; �� � 0; � � 0; ! � 0:

7. FIAPARCH(p; d; q) / HYAPARCH(p; d; q)

��t = ! +
�
1� [1� � (L)]�1 � (L)
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h
(1� L)d � 1

io�
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which can be rewritten as

��t = !� + � (L)��t +

"
�� (L)� � (L) +

1X
k=1

�kL
k

#
(j"tj � '"t)� ;

where �� (L) ; � (L) ; and �k are de�ned in FIGARCH/HYGARCH. The parameters are �v = (!
�; �;

��0; '; �; d; �)0: For a HYAPARCH(1; d; 1) model, the following constraints are su�cient for positiveness
of �2t : 1 > ' > �1; � > 0; �� � � + �d � 0; �� � 0; � � 0; !� � 0:

8. CGARCH(1,1)

�2t = 
t + �
�
�2t�1 � 
t�i

�
+ �

�
"2t�1 � 
t�1

�

t = ! + �
t�1 + �

�
"2t�1 � �2t�1

�
;

1 > � > � + � > 0; � > � > 0; � > 0; ! > 0;

where 
t is the long-run volatility.

22



Table 1: Evaluating Density Forecast Models 

  GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH 

Normal 0.0277 0.0246 0.0193 0.0211 0.0308 0.0291 0.0192 0.0228 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Student t 0.0104 0.0108 0.0090 0.0104 0.0133 0.0103 0.0087 0.0089 
 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 0.0001 0.0008 

GED 0.0147 0.0144 0.0125 0.0141 0.0182 0.0144 0.0123 0.0133 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Laplace 0.0363 0.0444 0.0409 0.0429 0.0425 0.0331 0.0406 0.0359 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Double Weibull 0.0166 0.0160 0.0163 0.0147 0.0190 0.0142 0.0129 0.0134 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Skewed t 0.0581 0.0373 0.0392 0.0358 0.0405 0.0584 0.0394 0.0665 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IHS 0.0095 0.0122 0.0112 0.0127 0.0130 0.0094 0.0109 0.0084 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 

Mixture 0.0068 0.0097 0.0086 0.0098 0.0101 0.0065 0.0083 0.0056 
 0.0017 0.0000 0.0001 0.0000 0.0000 0.0025 0.0002 0.0084 

Double Gamma 0.0111 0.0108 0.0089 0.0103 0.0182 0.0084 0.0081 0.0109 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 

Sargan 0.0136 0.0148 0.0108 0.0172 0.0142 0.0115 0.0094 0.0094 

S&P 500 

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0004 

Normal 0.0270 0.0318 0.0303 0.0313 0.0327 0.0269 0.0302 0.0213 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Student t 0.0192 0.0243 0.0226 0.0217 0.0213 0.0187 0.0225 0.0167 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GED 0.0243 0.0273 0.0259 0.0262 0.0254 0.0226 0.0258 0.0205 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Laplace 0.0599 0.0665 0.0584 0.0593 0.0619 0.0536 0.0586 0.0564 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Double Weibull 0.0310 0.0346 0.0265 0.0244 0.0267 0.0226 0.0240 0.0191 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Skewed t 0.0268 0.0206 0.0198 0.0196 0.0220 0.0276 0.0200 0.0304 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IHS 0.0222 0.0218 0.0198 0.0205 0.0216 0.0189 0.0203 0.0161 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Mixture 0.0159 0.0112 0.0110 0.0104 0.0174 0.0167 0.0115 0.0153 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Double Gamma 0.0231 0.0240 0.0232 0.0224 0.0253 0.0211 0.0213 0.0213 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Sargan 0.0282 0.0372 0.0328 0.0042 0.0098 0.0103 0.0099 0.0294 

NASDAQ 

 0.0000 0.0000 0.0000 0.0149 0.0000 0.0001 0.0001 0.0000 

Note: The first row for each combination of volatility and distribution gives the estimated KLIC IR,n (p:f) in Equation (11) based 
on the AR(L)-SNP(K) model for the transformed PIT as shown in Equations (8) and (10), where the orders of L and K are chose 
by the AIC criteria for L = 0,…,5 and K = 0,…,8. The second row gives the p-value associated with the LR statistic in Equation 
(13) for each model, testing the null hypothesis that the density forecast model is optimal, i.e., the transformed PIT is IID N(0,1). 



Table 2: Comparing Density Forecast Models 

   GARCH GJR APARCH EGARCH STGARCH HYGARCH HYAPARCH CGARCH 

 Normal 1.6437 1.6225 1.6135 1.6134 1.6459 1.6421 1.6140 1.6397 
Student t 1.6288 1.6121 1.6067 1.6070 1.6309 1.6276 1.6063 1.6255 
GED 1.6330 1.6166 1.6107 1.6107 1.6346 1.6317 1.6103 1.6304 
Laplace 1.6564 1.6451 1.6405 1.6406 1.6602 1.6549 1.6406 1.6545 
Double Weibull 1.6368 1.6209 1.6181 1.6116 1.6346 1.6299 1.6111 1.6292 
Skewed t 1.6280 1.6109 1.6061 1.6065 1.6301 1.6267 1.6057 1.6249 
IHS 1.6281 1.6107 1.6060 1.6065 1.6301 1.6268 1.6057 1.6251 
Mixture 1.6303 1.6084 1.6030 1.6042 1.6336 1.6257 1.6044 1.6274 
Double Gamma 1.6424 1.6320 1.6140 1.6224 1.6368 1.6392 1.6157 1.6324 

S&P 500 p1=0.007 

p2=0.007 

Sargan 1.6365 1.6178 1.6108 1.6114 1.6388 1.6409 1.6149 1.6309 

 Normal 2.0298 2.0220 2.0191 2.0174 2.0309 2.0270 2.0184 2.0222 
Student t 2.0220 2.0162 2.0140 2.0126 2.0235 2.0210 2.0132 2.0153 
GED 2.0263 2.0192 2.0169 2.0156 2.0275 2.0246 2.0162 2.0198 
Laplace 2.0641 2.0597 2.0554 2.0544 2.0673 2.0600 2.0550 2.0617 
Double Weibull 2.0506 2.0319 2.0341 2.0207 2.0336 2.0306 2.0214 2.0222 
Skewed t 2.0190 2.0119 2.0094 2.0080 2.0207 2.0177 2.0087 2.0125 
IHS 2.0531 2.0347 2.0366 2.0524 2.0544 2.0534 2.0423 2.0138 
Mixture 2.0246 2.0139 2.0087 2.0092 2.0268 2.0205 2.0530 2.0226 
Double Gamma 2.0480 2.0576 2.0388 2.0593 2.0640 2.0608 2.0515 2.0419 

NASDAQ p1=0.145 

p2=0.097 

Sargan 2.0653 2.0497 2.0524 2.0117 2.0273 2.0234 2.0133 2.0207 

Note: Each cell gives the negative predictive log-likelihood  for each model given the distribution and volatility 
combination. For comparison we take the Normal-GARCH combination as a benchmark model, with which the remaining 79 models are 
compared using the negative predictive log-likelihood as a loss, where p

∑ −+=
− T

Rt
j

t,Rt
j

t
ˆ;yn 1

1 )(ln θψ −1

1 and p2 refer to the reality check p-values of White (2000) and 
Hansen (2005), respectively. 


